扁枝石松中石杉型三萜成分研究
【摘要】 目的对扁枝石松全草80 %乙醇提取物中的石杉型三萜类化学成分进行研究。方法利用正相和反相硅胶柱色谱方法进行分离纯化,通过MS, 1H-NMR, 13C-NMR波谱数据鉴定化合物结构。结果从扁枝石松共分离得到7个石杉型三萜类化合物,分别鉴定为serrat-14-en-3β, 21α-diol ①;serrat-14-en-3β, 21β-diol ②; 3β-hydroxy-21α-acetoxy-14-serraten③; 3β, 21β-dihydroxy-14-serraten-24-oic acid (lycernuic acid A, ④;14-serraten-3α, 21β, 24-triol (lycoclavanol, ⑤, 3α, 20β, 21β-trihydroxy-14-serraten- 24-oic acid ⑥;21-episerratenediol-3-α-L-arabinopyranoside (inundoside E, ⑦。结论化合物7为首次从该属植物中分离得到,化合物3为首次从该植物中分到。
【关键词】 扁枝石松; 化学成分; 石杉型三萜
Abstract:ObjectiveTo study the serratene-type triterpenoids from the 80 % alcohol extract of Diphasiastrum complanatum.MethodsThe compounds were isolated and purified by silica gel, C18 reverse-phase silica gel column chromatographic methods, and their structures were elucidated by spectral analysis. ResultsSeven serratene-type triterpenoids were obtained and identified as serrat-14-en-3β, 21α-diol (1), serrat-14-en-3β, 21β-diol (2), 3β-hydroxy-21α-acetoxy- 14-serraten (3), 3β, 21β-dihydroxy-14-serraten-24-oic acid (lycernuic acid A, 4 ) , 14-serraten-3α, 21β, 24-triol (lycoclavanol, 5 ), 3α, 20β, 21β-trihydroxy-14-serraten-24-oic acid (6), 21- episerratenediol-3-α-L-arabinopyranoside (inundoside E, 7 ). ConclusionCompound 7 was isolated from Diphasiastrum and compound 3 from the plant for the first time.
Key words: Diphasiastrum complanatum; Chemical constituents; Serratene-type triterpenoids
扁枝石松 Diphasiastrum complanatum L.属石松科扁枝石松属植物,又名伸筋草、扁心草,具舒筋活血、祛风散寒、通经、消炎等作用,主治风湿骨痛,月经不调,跌打损伤,烧、烫伤等[1]。石松科植物化学成分主要含有石松生物碱[2]和石杉型三萜。石杉型三萜是一类特殊的五环三萜,其中C环为七元环,另外四个环为六元环,七个角甲基或其氧化形式,14-15位常有双键,3位和21位为氧接官能团。据报道该类化合物具有很强的抗肿瘤促进活性、肿瘤化学预防以及抑制白色念珠菌分泌型天冬氨酸蛋白酶活性[3~5]。因此我们对在贵州民间被广泛用于治疗风湿性关节炎、跌打损伤等疾病的扁枝石松进行三萜类化学成分的系统研究,从中分离得到 7个石杉型三萜类化合物,化合物7为首次从该属植物中分得,化合物3为首次从该植物中分到。
1 仪器与材料
Varian INOVA-400型核磁共振波谱仪(TMS为内标);美国HP公司GC-MS5973型气相色谱-质谱联用仪;反相硅胶填料(YMC GEL ODS-A)日本YMC公司,薄层色谱用硅胶(G60,GF-254)及柱色谱用硅胶(200-300目,300-400目)均为青岛海洋化工集团生产。
药材于2006-07月购自贵州省贵阳市万东桥药材市场,经贵阳中医学院陈德媛教授鉴定为石松科扁枝石松属植物扁枝石松 Diphasiastrum complanatum L. Holub。
2 方法与结果
2.1 提取分离15 kg扁枝石松干燥全草,粉碎,用80 % 乙醇(料液比为1∶5) 回流浸提4次,提取时间分别为3 h,3 h,2 h,2 h,合并4次滤液,减压回收乙醇,得粗浸膏。浸膏加适量水混悬,依次以石油醚、氯仿、醋酸乙酯和正丁醇萃取,分别得石油醚、氯仿、醋酸乙酯和正丁醇萃取物210,150,380 g和410 g。石油醚萃取部分经硅胶柱层析,用石油醚-丙酮 ( 10∶1~1∶0 ) 梯度洗脱,经TLC检识,合并得5部分。其中Fr3部分经硅胶柱层析,用石油醚-丙酮 ( 8∶1 ) 洗脱,得到化合物1 ( 200 mg ) 和2 ( 120 mg );Fr4部分经硅胶柱层析,用石油醚-醋酸乙酯 ( 10∶1 ) 洗脱,得到化合物3 ( 300 mg )。氯仿萃取部分经硅胶柱层析,氯仿-甲醇 ( 20∶1~1∶1 ) 梯度洗脱,经TLC检识后合并得4部分,其中Fr3部分经硅胶柱层析,石油醚-丙酮 ( 8∶1~0∶1 ) 梯度洗脱,经TLC检识后合并得Fr3-1,Fr3-2和Fr3-3三部分。Fr3-1经硅胶柱层析,氯仿-甲醇 ( 20∶1) 洗脱得化合物4 (120 mg);Fr3-2部分经硅胶柱层析,氯仿-甲醇 ( 15∶1 ) 洗脱得化合物5 ( 70 mg );Fr3-3部分经反相硅胶柱层析,30%、50%、70%、90%甲醇-水洗脱,经TLC检识后合并得Fr3-3-1和 Fr3-3-2两部分,经反复硅胶柱层析,氯仿-甲醇、石油醚-醋酸乙酯梯度洗脱后得白色粉末6 ( 60 mg ) 和7 ( 40 mg)。
2.2 结构鉴定
2.2.1 化合物1白色粉末,EI-MS m/z 442[M]+, 427, 409, 391, 234, 220, 207, 189。1H-NMR (400 MHz, CDCl3-MeOD) δ:5.33 (1H, brs, H-15), 3.22 (1H, dd, J = 10.4, 5.6 Hz, H-21), 3.17 (1H, dd, J = 10.4, 6.4 Hz, H-3), 0.96, 0.95, 0.83, 0.82, 0.80, 0.76, 0.67 (s, 7×CH3);13C NMR (100 MHz, CDCl3-MeOD) δ:38.3 (C-1), 24.9 (C-2), 78.1 (C-3), 37.7 (C-4), 55.4 (C-5), 18.5 (C-6), 44.8 (C-7), 38.5 (C-8), 56.8 (C-9), 36.7 (C-10), 26.6 (C-11), 27.0 (C-12), 62.5 (C-13), 137.8 (C-14), 121.8 (C-15), 23.5 (C-16), 49.2 (C-17), 38.4 (C-18), 35.8 (C-19), 26.8 (C-20), 78.4 (C-21), 36.8 (C-22), 27.5 (C-23), 15.0 (C-24), 15.2 (C-25), 19.3 (C-26), 55.7 (C-27), 12.9 (C-28), 14.1 (C-29), 26.8 (C-30)。其光谱数据与文献[6]报道的serrat-14-en-3β, 21α-diol基本一致。
2.2.2 化合物2白色粉末,EI-MS m/z 442 [M] +, 427, 409, 302, 284, 269, 255, 234, 220, 207, 189。1H-NMR (400 MHz, CDCl3 ) δ:5.32 (1H, brs, H-15), 3.45 (1H, brs, H-21), 3.19 (1H, dd, J = 11.6, 4.8 Hz, H-3), 0.97, 0.93, 0.89, 0.83, 0.80, 0.77, 0.69 (s, 7×CH3)。13C-NMR (400 MHz, CDCl3) δ:38.5 (C-1), 25.2 (C-2), 78.8 (C-3), 38.1 (C-4), 55.7 (C-5), 18.9 (C-6), 45.1 (C-7), 38.9 (C-8), 56.8 (C-9), 35.9 (C-10), 25.4 (C-11), 27.1 (C-12), 62.8 (C-13), 138.5 (C-14), 122.0 (C-15), 24.0 (C-16), 43.3 (C-17), 37.1 (C-18), 31.2 (C-19), 27.5 (C-20), 76.2 (C-21), 37.4 (C-22), 28.1 (C-23), 15.4 (C-24), 15.7 (C-25), 19.8 (C-26), 56.2 (C-27), 13.3 (C-28), 21.8 (C-29), 27.7 (C-30)。以上数据与文献[6]报道的serrat-14-en-3β, 21β-diol一致。
2.2.3 化合物3白色晶体 (氯仿-甲醇), EI-MS m/z 484 [M]+, 469, 424, 409, 391, 262, 207, 189。1H-NMR (400 MHz, CDCl3) δ:5.32 (1H, brs, H-15), 4.50 (1H, dd, J = 11.2, 4.4 Hz, H-21), 3.18 (1H, dd, J =11.2, 4.4 Hz, H-3), 2.06 (3H, s, CH3COO), 0.97,0.90, 0.84, 0.83, 0.80, 0.77, 0.69 (s, 7×CH3);13C-NMR (100 MHz, CDCl3) δ:38.6 (C-1), 27.5 (C-2), 78.8 (C-3), 38.1 (C-4), 55.7 (C-5), 18.9 (C-6), 45.1 (C-7), 38.9 (C-8), 62.8 (C-9), 35.9 (C-10), 25.3 (C-11), 27.1 (C-12), 57.0 (C-13), 138.3 (C-14), 121.9 (C-15), 23.8 (C-16), 49.6 (C-17), 37.7 (C-18), 36.7 (C-19), 24.1 (C-20), 81.1 (C-21), 37.1 (C-22), 28.1 (C-23), 15.7 (C-24), 15.4 (C-25), 19.8 (C-26), 56.0 (C-27), 13.4 (C-28), 15.8 (C-29), 27.5 (C-30), 171.1 (C=O), 21.3 (OCOCH3)。其光谱数据与文献[7]报道的3β-hydroxy-21α-acetoxy-14-serraten一致。
2.2.4 化合物4白色粉末,EI-MS m/z 472 [M]+, 454, 439, 421, 332, 270, 237, 220, 203, 187。1H-NMR (400 MHz,C5D5N) δ:5.46 (1H, brs, H-15), 3.65 (1H, brs, H-21), 3.36 (1H, dd, J = 12.0, 4.0 Hz, H-3), 1.69, 1.13, 1.02, 0.92, 0.85, 0.81 (s, 6×CH3);13C-NMR (100 MHz, C5D5N) δ:39.7 (C-1), 29.4 (C-2), 78.2 (C-3), 49.4 (C-4), 57.0 (C-5), 21.3 (C-6), 45.6 (C-7), 37.3 (C-8), 62.5 (C-9), 38.9 (C-10), 26.7 (C-11), 27.7 (C-12), 57.3 (C-13), 139.0 (C-14), 122.9 (C-15), 24.6 (C-16), 43.8 (C-17), 36.4 (C-18), 31.8 (C-19), 25.7 (C-20), 75.3 (C-21), 38.0 (C-22), 24.8 (C-23), 180.9 (C-24), 14.3 (C-25), 19.8 (C-26), 56.8 (C-27), 13.9 (C-28), 22.2 (C-29), 28.7 (C-30)。其谱学数据与文献[5]报道的3β,21β-dihydroxy-14-serraten-24-oic acid(lycernuic acid A)基本一致。
2.2.5 化合物5白色粉末,EI-MS m/z 458 [M]+, 440, 422, 407, 391, 269, 205, 187, 1H-NMR (400 MHz, C5D5N) δ:5.44 (1H, brs, H-15), 4.44 (1H, brs, H-3), 4.10 (1H, d, J = 11.2 Hz, CH-24), 3.86 (1H, d, J = 10.8 Hz, CH′-24 ), 3.66 (1H, brs, H-21), 1.59, 1.15, 0.93, 0.89, 0.83, 0.80 (s, 6×CH3)。 13C-NMR (100 MHz, C5D5N) δ:34.2 (C-1), 26.8 (C-2), 70.0 (C-3), 44.3 (C-4), 50.3 (C-5), 19.7 (C-6), 46.0 (C-7), 38.0 (C-8), 63.1 (C-9), 38.6 (C-10), 25.5 (C-11), 27.6 (C-12), 57.4 (C-13), 139.1(C-14), 122.7 (C-15), 24.6 (C-16), 43.8 (C-17), 36.4 (C-18), 31.9 (C-19), 26.7 (C-20), 75.3 (C-21), 37.7 (C-22), 23.7 (C-23), 65.8 (C-24), 16.6 (C-25), 20.1 (C-26), 56.8 (C-27), 13.8 (C-28), 22.2 (C-29), 28.7 (C-30). 其光谱数据与文献[8]报道的14-serraten-3α, 21β, 24-triol (lycoclavanol) 基本一致。 2.2.7 化合物7白色粉末,ESI-MS m/z 573 [M-H]-, 609[M+Cl]-;EI-MS m/z 488, 470, 455, 439, 277, 259, 205, 187。1H-NMR (400 MHz, C5D5N ) δ:5.46(1H, brs, 15-H), 4.78 (1H, d, J = 6.8 Hz, H-1' ), 3.38 (1H, dd, J = 11.6, 4.4 Hz, H-21), 1.28, 1.15, 0.97, 0.93, 0.80, 0.79, 0.77 (s, 7×CH3); 13C-NMR (100 MHz, C5D5N) δ: 38.1 (C-1), 26.6 (C-2), 88.7 (C-3), 39.8 (C-4), 56.2 (C-5), 19.1 (C-6), 45.5 (C-7), 38.0 (C-8), 63.0 (C-9), 38.9 (C-10), 25.5 (C-11), 27.5 (C-12), 57.3 (C-13), 139.0 (C-14), 122.7 (C-15), 24.6 (C-16), 43.8 (C-17), 36.4 (C-18), 31.8 (C-19), 27.0 (C-20), 75.3 (C-21), 37.4 (C-22), 28.7 (C-23), 16.1 (C-24), 16.9 (C-25), 20.1 (C-26), 56.7 (C-27), 13.8 (C-28), 22.2 (C-29), 28.3 (C-30), 107.6 (C-1' ), 73.0 (C-2' ), 74.7 (C-3' ), 69.6 ( C-4' ), 66.8 (C-5' )。其光谱数据与文献[9] 报道的21-episerratenediol-3-α-L-arabinopyranoside (inundoside E ) 一致。 3 讨论 【参考文献】
2.2.6 化合物6白色粉末, EI-MS m/z 488 [M]+, 470, 452, 437, 408, 372, 250, 237, 219, 201, 187。 1H-NMR (400 MHz, C5D5N ) δ:5.45 (1H, brs, H-15), 4.69 (1H, brs, H-3), 4.37 (1H, d, J = 10.4, H-20), 3.82 (1H, brs, H-21), 1.75, 1.19, 1.12, 0.95, 0.92, 0.84 (s, 6×CH3)。 13C-NMR (100 MHz, C5D5N) δ:34.8 (C-1), 27.9 (C-2), 70.6 (C-3), 48.6 (C-4), 49.6 (C-5), 21.2 (C-6), 45.7 (C-7), 37.6 (C-8), 62.6 (C-9), 39.4 (C-10), 25.8 (C-11), 27.6 (C-12), 57.6 (C-13), 139.0 (C-14), 122.8 (C-15), 24.4 (C-16), 41.3 (C-17), 37.8 (C-18), 43.3 (C-19), 66.5 (C-20), 79.6 (C-21), 38.9 (C-22), 25.5 (C-23), 180.7 (C-24), 14.1 (C-25), 19.9 (C-26), 56.9 (C-27), 14.7 (C-28), 21.7 (C-29), 28.8 (C-30)。以上数据与文献[8]报道的3α, 20β, 21β-trihydroxy-14-serraten-24-oic acid一致。
石杉型三萜类化合物在氯仿、醋酸乙酯、甲醇、二甲亚砜以及水中的溶解性都比较差,仅在吡啶中能充分溶解,因此给分离纯化及体外活性筛选工作带来很大的困难。鉴于石杉型三萜具有较强的细胞毒和抗肿瘤及抗真菌活性,为了进一步揭示该类化合物的生物活性,在其结构中引入糖基,从而提高该类化合物的水溶性是非常必要的。近几年来,未见有关石杉型三萜糖苷类化合物及其生物活性的研究报道,作者从扁枝石松中分离得到一个已知的石杉型三萜糖苷类化合物,并正在对其生物活性进行试验。继续深入的研究对石杉型三萜糖苷类化合物的发现及其生物活性的阐明具有一定的科学意义。
[1]何顺志, 徐文芬. 贵州中草药资源研究[M].贵阳:贵州科技出版社, 2007:148.
[2]Ma, X Q, Gang D V. The lycopodium alkaloids[J]. Nat. Prod. Rep, 2004, 21:752.
[3]Tanaka R., Minami T, Ishikawa Y, et al. Cancer chemopreventive activity of serratane-typetriterpenoids on two-stage mouse mouse skin carcinogenesis[J]. Cancer Lett,2003,196:121.
[4]Tanaka R, Minami T, Ishikawa Y. Cancer Chemopreventive activity of Serratane-Type Triterpenoids from Picea jezoensis[J]. Chem & Biodiver, 2004, 1:878.
[5]Zhang Zhizhen, ELSlhly H N, Jacob M R, et al. Nature products inhibiting Candida albicans secreted aspartic proteases from Lycopodium cernuum[J]. J Nat Prod, 2002, 65:979.
[6]Fang Jimmin, Tsai Weiyu, Cheng Yushia. Serratene triterpenes from Pinus armandii bark[J]. Phytochemistry, 1991, 30 (4):1333.
[7]Zhou Hui. 蛇足石杉中性成分的研究[D]. 2002:60.
[8]Yan Jian, Yi Ping, Chen Baohui, et al. Polyhydroxserratane triterpenoids from Diphasiastrum complanatum[J]. Phytochemistry, 2008, 69:506.
[9]Tsuda Y, Kaneda M, Yasufku N, et al. The structure of inundoside A-E occurring in Lycopodium inundatum[J]. Chem. Pharm. Bull, 1981, 8:2123.